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Abstract

Brake squeal is studied in this paper by feed-in energy analysis. Based on the brake closed-loop coupling
model, a calculation method of feed-in energy for squeal mode is derived. Result of the feed-in energy
indicates squeal tendency of the brake system, while formula for calculating it discloses the relation among
brake squeal phenomenon and structural parameters, such as frictional coefficient, geometric shape of
brake pads, elastic modulus of frictional material, substructure modal shape, etc. The method also helps to
analyze the effectiveness of various structural modification schemes attempted to eliminate the squeal noise.
Finally, this method is illustrated by application to a typical squealing disc brake.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since noise occurring in the process of braking not only destroys city environment but also
lessens vehicle comfort, it is very necessary as well as profitable to eliminate it. It should be noticed
referring to the associated literature that successful reduction of brake noise is achieved through
structure modification of certain brake components. See for example Felske’s [1] or Zhu’s [2]
solution to drum brake squeal, and Baba’s [3] or Guan’s [4] solution to disk brake squeal. Note
that Felske and Baba concentrate on experimental investigation. However, Zhu and Guan carry
out detailed model analysis to the brake system in addition to experimental investigation. The
theory on which the model analysis in Refs. [2,4] is based is given in Refs. [5,6] and it can be
generalized as follows:

(1) Brake vibration that induces noise is self-excited in nature and formed by the closed-loop
coupling of the brake system.
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(2) Generally, the squeal frequency is above several thousands, so elastic vibration modes of each
brake component must be taken into consideration.

(3) Structure design parameters of the brake components determine the brake system stability,
which reflects whether the brake has a tendency to squeal definitely. Hence, it is crucial to
make the structure parameters match when designing new products or when implementing
structure modification to the existing brakes which squeal.

The authors of Refs. [4,7], according to the theory mentioned above, establish a closed-loop
coupling model for disc brake with finite element method and modal synthetic method, and put
forward a method for brake squeal analysis and the necessary structure modification. In this
method, the squeal mode, namely the unstable mode obtained from the eigenanalysis of the
synthetic brake model, is composed of all substructure modes. The magnitude coefficient of the
substructure modal co-ordinate is defined to indicate the influence of these substructure modes on
the squeal mode, and the substructure mode with the biggest magnitude coefficient is regarded as
the dominant substructure mode. Then, the modal frequency of the dominant substructure mode
will be set to be the target of structure modification attempted to eliminate the squeal noise.
Although effective in practice, the method is not complete yet. First, the coefficient of the
substructure modal co-ordinate is complex and hence considering only its magnitude is not
comprehensive. Secondly, the method merely has substructure modal frequencies as modification
targets, but as is known that modal shape is important as well. The above two drawbacks have to
be overcome to make the analytical method more preferable.

Kinetic energy of the vehicle, which is transformed into heat through frictional interaction
between brake disc and pads during the process of braking, is the unique resource of energy
consumed by the brake while it is squealing. This paper just attempts to analyze the squeal
problem from the view of energy. First, feed-in energy corresponding to the squeal mode has been
defined and calculated based on the model in Refs. [4,7], and then the relation between calculated
feed-in energy and brake squeal tendency is explored. Next, using formulae of feed-in energy,
effect of design parameters and elastic vibration characteristics of substructure on squeal tendency
is analyzed, and particular observation on structural modification is provided. Finally,
effectiveness of the feed-in energy method is verified by an application to analysis of the same
sample brake considered in Refs. [4,7].

2. Calculation method of feed-in energy

The synthetic equation of the brake closed-loop coupling model is

M .U þ ðK þ KF ÞU ¼ 0; ð1Þ

where U denotes the displacement vector to all nodes of the brake FE model, M and K are the
discrete mass and stiffness matrix obtained by FEM and KF is the unsymmetric connecting
stiffness matrix.
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Convert the displacement vector U into the modal co-ordinate vector q of substructures of the
brake system [8]:

U ¼ Fq; ð2Þ

where F is the matrix composed of respective mass normalized modal shape matrix of each brake
substructure. Then substitute Eq. (2) into Eq. (1) to get

.q þ Gq ¼ 0; ð3Þ

where G ¼ FTðK þ KF ÞF is unsymmetrical but non-singular. Thus Eq. (3) has unique eigenvalues.
Then perform eigenanalysis of Eq. (3) and extract the synthetic eigenvalues and thereof

corresponding right eigenvectors. Eigenvalue with positive real part forms the unstable mode, also
called squeal mode, since the imaginary part is consistent with brake squeal frequency. Assuming
the ith mode is unstable mode with eigenvalue li and eigenvector ci; the corresponding ith modal
shape coefficient vector %Ui is defined by

%Ui ¼ Fci: ð4Þ

Theoretically, the feed-in energy during one cycle of vibration should be derived from the
response in physical co-ordinates. However, the brake system is non-linear in nature and will
converge to periodical limit circle movement when squeal occurs, while the vibration of the
synthetic model will diverge at the squeal mode because of linearization of the brake system.
Therefore, response of the model cannot be used for calculation of the feed-in energy during one
cycle. As a solution, we propose that the feed-in energy be derived using the magnitude and phase
of the vector %Ui: The result calculated according to such proposition can be effectively used for
comparative analysis of squeal tendency.

Hereinafter, the calculation process for feed-in energy will be revealed.
As shown in Fig. 1, point a on brake outer pad A and point b on brake disc B are a pair of

interactive nodes in FE model, connected with a spring with stiffness K. We will show first how to
calculate the feed-in energy during one cycle between a pair of interactive nodes. The ith modal
shape coefficients of nodes a and b are decomposed into components xa; ya; za; and xb; yb; zb;
respectively, along co-ordinate axes x; y and z: Note that these components are complex. Then we

Fig. 1. Schematic drawing for calculation of feed-in energy between outer pad A and brake disc B.
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express the relative displacement between nodes a and b as

xa � xb ¼ Aabx cosðoit þ yabxÞ;

ya � yb ¼ Aaby cosðoit þ yabyÞ;

za � zb ¼ Aabz cosðoit þ yabzÞ; ð5Þ

where Aabx; Aaby and Aabz are magnitudes of the relative displacements along x-, y- and z-axis,
and yabx; yaby and yabz are corresponding phases.

Angle y in Fig. 1 shows the geometrical position of nodes a and b; so we call it a geometrical
position angle. Assuming the frictional coefficient m is constant, then the friction forces acting on
nodes a and b along x- and z-axis are, respectively,

Fxa ¼ �Fxb ¼ mKðya � ybÞcos y;

Fza ¼ �Fzb ¼ mKðya � ybÞsin y: ð6Þ

The nodal feed-in energy Eabx of the node pair ab; induced by x direction frictional force during
one cycle of vibration is given by

Eabx ¼
Z T

0

Fxað ’xa � ’xbÞ dt:

By substituting Eqs. (5) and (6) into the above integral, we have

Eabx ¼ mKpAabxAaby cos y sin ðyaby � yabxÞ: ð7Þ

In the same way, we can derive the nodal feed-in energy of ab induced by z direction frictional
force, as well as two components of the nodal feed-in energy between node b on disc B and node c
on inner pad C

Eabz ¼ mKpAabzAaby sin y sinðyaby � yabzÞ;

Ebcx ¼ mKpAbcxAbcy cos y sinðyabx � yabyÞ;

Ebcz ¼ mKpAbczAbcy sin y sinðybcz � ybcyÞ: ð70Þ

Then by summation of the nodal feed-in energy of all node pairs between pads (A and C) and disc
(B), we get EABx; EABz; EBCx; EBCz; respectively, as well as the total feed-in energy of the brake

E ¼ EABx þ EABz þ EBCx þ EBCz: ð8Þ

Compared with Refs. [4,7], note that the phase information of the coefficient of substructure
modal co-ordinate is neglected in Refs. [4,7]; however, the present feed-in energy method takes
phase information of relative displacement between node pairs into account.

3. The relationship between feed-in energy and brake squeal tendency

In order to verify whether the calculated feed-in energy can indicate the squeal tendency of the
brake, the analytical method is applied to the sample disc brake investigated in Refs. [4,7]. The
modal shape vector of certain mode of the bracket is multiplied by factor S so as to change the
modal shape matrix, and thus bring about the system less instable. Then eigenanalysis and
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calculation of feed-in energy for the squeal mode are performed. The calculation results are listed
in Table 1.

It can be seen that the imaginary part of the unstable mode representative of squeal frequency
changes little, while real part representative of squeal tendency changes apparently, with change of
factor S. Moreover, the real part of the unstable mode is proportional to the calculated feed-in
energy (see column a in Table 1). Therefore, just like real part of the unstable mode, calculated
total feed-in energy E can also indicate the squeal tendency of the brake system. The more the
total feed-in energy is, the more the brake tends to squeal. When the system is stable, E is zero.
Although both the real part of eigenvalue and the calculated total feed-in energy can be used as
the estimation indicator of squeal tendency, the later is preferable to the former since it has
information of vibration characteristics involved in, and thus is more suitable in the analysis of
the influence of structure parameters on squeal tendency.

4. Analyzing influence of brake design parameters on squeal tendency by feed-in energy method

1. It can be seen from Eqs. (7), (70) and (8) that the larger the frictional coefficient, the larger the
energy fed in for squealing. Thus the more frequently the squeal occurs, while keeping the
system structure unchanged.

2. When pads with higher elastic modulus are used, namely the stiffness coefficient K in Eqs. (7)
and (70) is increased, frictional force increases. This makes feed-in energy larger and squeal
tendency is intensified. This conclusion agrees with the experimental result that soft frictional
material benefits the brake system stability. The above two conclusions agree with those given
in the paper [9].

3. The influence of the geometrical shape of the pad on squeal tendency can also be disclosed with
the feed-in energy method. For pad long in x direction but narrow in z direction with
unchanged frictional contact area, since the range of geometrical position angle y enlarges,
frictional force along x direction is weakened such that the total feed-in energy E decreases (see
Eq. (6)) and this makes the system incline stable.

Table 1

Relation between feed-in energy and squeal tendency

Factor to the

modal shape s

Squeal mode l Total feed-in

energy E

Ratio of real part of squeal

mode to total feed-in energy

a ¼ ReðlÞ=EReal part

Re(l)
Imaginary part

Im(l)

0.91 24.2 2229.7 8.52 2.84 (24.2/8.52)

0.95 23.1 2226.1 8.14 2.84

1.0 21.4 2222.5 7.50 2.85

1.05 18.8 2218.9 6.57 2.85

1.11 14.9 2215.4 5.20 2.86

1.18 8.4 2212.0 2.94 2.86

1.25 None 0 —
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5. Analyzing the influence of substructure elastic vibration characteristics on brake squeal tendency

by feed-in energy method

It is the elastic vibration characteristics of substructure that affects the occurrence of brake
squeal remarkably in practice. So it is necessary to discuss the aspect.

The squeal mode of the researched sample brake is 21.4+2222.5i. The feed-in energies EABx;
EABz; EBCx and EBCz; and total energy E; as defined above, are calculated corresponding to the
squeal mode. Results are listed in Table 2. Obviously, the following facts can be observed:

1. Energy fed in the brake system through the frictional interaction between pads and disc comes
primarily from the x direction vibration, since EABx and EBCx are much bigger than EABz and
EBCz.

2. The dominant effect of vibration of inner pad on feed-in energy is obvious, since energy fed in
from frictional interaction between inner pad and disc is 2–3 times as much as that from outer
pad and disc.

Now returning to formulas (7) and (70), let us probe into the effects of geometrical position
angle, as well as magnitude and phase of the relative displacement, on the calculated feed-in
energy to check the above two facts.

Calculation results show that for a majority of corresponding node pairs that nodal feed-in
energy induced by x direction component of frictional force is much larger than that induced by z

direction component of frictional force, because: (1) relative displacement magnitude Ax is much
bigger than Az and (2) x direction components of the distributed frictional forces are much bigger
than z direction ones, and moreover, x direction components point consistently into the same
direction of x-axis, while z direction ones with one-to-one point oppositely so as to cause
counteraction in summation. Consequently, feed-in energies EABx and EBCx preponderate EABz

and EBCz:
As to the fact that energy fed in from inner pad and disc is much larger than that from outer

pad and disc, it is ascribed mainly to the higher magnitude of relative displacement between inner
pad and disc. Note that the ordering is disc, outer pad and inner pad if they are arranged in
ascending order of vibration magnitude. Therefore, it can be inferred from the above facts that
reduction of x direction vibration magnitude of inner pad is the most effective way to reduce feed-
in energy and thus then lower the squeal level.

When vibrating at the squeal mode (a bit more above 2 kHz), brake pad will move as a rigid
body in x-direction. Since brake pads are supported on the bracket, vibration characteristics of
the bracket have a straightforward influence on the rigid movement of the pads and should be
paid attention to. To make clear the relationship of vibration characteristics of pad and bracket,
we have x-direction modal shape coefficient corresponding to squeal mode of the pairs of contact

Table 2

Feed-in energy to squeal mode

Squeal mode EABx EAbz EBCx EBCz E

21.4+2222.5i 1.89 0.03 5.21 0.38 7.50
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nodes on pads and bracket extracted and listed in Table 3, where nodes 547 and 553 are of inner
pad, and nodes 509 and 515 are of outer pad. They correspond to the bracket nodes 1214, 1218,
and 1246, 1250. These four bracket nodes position on the right arm of the bracket, shown in
Fig. 2, which receives the x direction force applied by the pads. It shows clearly in Table 3 that
vibration magnitudes of key nodes on inner pad are 2–3 times as much as those of key nodes on
outer pad. This fact just agrees with the relationship between feed-in energy by inner pad and that
by outer pad. Furthermore, the corresponding nodes of pad and bracket have almost the same
modal shape, whose vibration magnitudes and phases are given in Table 3. So it can be inferred
further that vibration characteristics of the right arm of the bracket determines to a good
approximation the scale of feed-in energy, i.e., the squeal tendency of the brake. Thus, the
solution of the squeal problem pivots on the understanding of the vibration characteristics of the
right arm of the bracket as well as the critical factors influencing it.

By expression (4), note that the modal shape coefficient vector to squeal mode is a linear
summation of all modal shape vectors of substructures. %UEi; representing the modal shape
coefficient vector corresponding to the bracket, can be extracted from %Ui and expressed as a linear
summation of modal shape vectors of the bracket, i.e.,

%UEi ¼ FEcEi ¼
X

j

jEj � cEj;i; ð9Þ

Table 3

x Direction modal shape coefficient to squeal mode of corresponding nodes on pads and bracket

Nodes of pads Inner pad Outer pad

547 553 509 515

Magnitude 0.379 0.355 0.913 0.971

Phase (deg) 21.3 22.9 �153.3 �154.1

Nodes of bracket 1214 1218 1246 1250

Magnitude 0.413 0.275 0.896 1.001

Phase (deg) 21.8 19.6 �153.5 �153.9

Fig. 2. Schematic drawing of key nodes on bracket.
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wherein FE is the modal shape matrix of the bracket, while jE;j denotes the jth modal shape
vector of the bracket.

For bracket node l; let jEl;j be the lth element of the jth modal shape vector of the bracket.
Then the modal shape coefficient of node l; %UEl; i; can be obtained from Eq. (9):

%UEl; i ¼
X

j

jEl; j � cEj; i; ð10Þ

where product jEl; j � cEj; i is defined as jth bracket mode component of the modal shape
coefficient %UEl; i. Due to their comparatively large vibration magnitude (see Table 3), bracket
nodes 1246 and 1250 are considered the key nodes influencing feed-in energy and squeal tendency.
Therefore, bracket mode components (BMC) of the modal shape coefficients of these two key
nodes deserve calculation and further analysis. Here we have eight major BMC listed in Table 4.
Since every element (i.e., cEj; i ) of the eigenvector to squeal mode is complex, the calculated BMC
of the modal shape coefficient are complex too. Magnitudes and phases of the eight major BMCs
are given in Table 4 below.

It can be seen from the given phase information in Table 3 that bracket nodes interacting with
inner pad vibrate almost oppositely to those interacting with outer pad along x direction.
Moreover, based on the phase value, it can be inferred that magnitude of the bracket mode
component alone can indicate influence of the bracket mode on the squeal tendency. In Table 4,
the eight major BMCs are selected based on their relatively bigger magnitude. Therefore, we claim
that the bracket mode with the larger magnitude of BMC exerts the strongest influence on the
vibration characteristics of the key nodes. Obviously, the 11th mode of the bracket is the
dominant mode affecting vibration characteristics of key nodes 1250 and 1246 according to the
calculated values in Table 4, and so is taken as the structure modification target to eliminate the
brake squeal.

In Refs. [4,7], influence of substructure modes on squeal mode is estimated by their magnitude
coefficients of the substructure modal co-ordinates to the squeal mode. Considering Eq. (3), let C
be the synthetic modal shape matrix and let r be the vector of generalized modal co-ordinates.
Then we have

q ¼ C � r; ð11Þ

r ¼ b � q; ð12Þ

Table 4

BMC of the modal shape coefficient of the key nodes

Mode order of Bracket j 5 7 9 11 13 18 23 26

Node, 1250 Magnitude of each component 0.145 0.260 0.239 0.537 0.070 0.156 0.112 0.143

Phase of each component 29.8 33.6 �157.1 �154.6 21.5 �151.3 �152.1 �148.8

Node, 1246 Magnitude of each component 0.145 0.263 0.182 0.562 0.084 0.142 0.105 0.131

Phase of each component 29.8 33.6 �157.1 �154.6 21.5 �151.3 �152.1 �148.8
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where b is the inversion of the synthetic modal shape matrix C: Assuming ri to be the squeal mode
of the brake, it can be decomposed as

ri ¼
X

I

X
j

bli;j:qIj; I ¼ A;B;C;D;E; ð13Þ

where I is the identifier of brake substructure with A corresponding to outer brake pad, B to brake
disc, C to inner brake pad, D to brake clipper and E to bracket; j is the order of the substructure
mode; and bli;j denotes the influence coefficient of jth mode of substructure I corresponding to the
squeal mode ri: It is a complex number. In Refs. [4,7], only magnitude of the influence coefficient,
named magnitude coefficient of substructure modal co-ordinate, is used as the indicator to
estimate the influence of corresponding substructure mode qIj on the squeal mode ri:

However, in the research of the brake squeal problem hereof, elements (jIl; j) of modal shape
vector of each substructure are involved in the estimation of the dominant bracket modes and
elements (cIj; i) of the synthetic modal shape vector are also involved as they are embodied in the
product jIl;j �cIj; i (refer to formula (10)). Thus, the product can reflect comprehensively and
straightly the influence of jth substructure mode on the vibration characteristics of key nodes.
Consequently, it is more rational to estimate the influence of substructure mode on vibration
characteristics of key nodes by the product jIl; j �cIj; i than by the magnitude coefficient in Refs.
[4,7].

6. Study of structure modification schemes of the sample disc brake

In Ref. [4], magnitude coefficient of the substructure modal co-ordinate to squeal mode is
calculated for the sample disc brake, and part of the results are given in Table 5. Then based on
the estimation principle provided therein, four of the bracket modes are considered as the
dominant substructure modes affecting squeal. They are the 11th mode, the 2nd mode, the 9th
mode and the 8th mode. However, when having each modal frequency of these dominant
substructure modes as structure modification target and (then) performing structure modification
analysis, it was found that the brake system is sensitive to only the 11th modal frequency of the
bracket. This can be explained here by the feed-in energy method, since as is shown in Table 5 that
the 11th bracket mode component of the modal shape coefficient has the largest magnitude (0.537
and 0.562, respectively, in Table 4) for the key nodes on the bracket.

In Ref. [4], two structure modification schemes to the bracket are put forward. Here we call
them schemes A and B. Although both of the two modification schemes have the 11th modal

Table 5

Magnitude coefficients of some substructure modal co-ordinates to squeal mode

Substructure name

Outer pad Brake disc Clipper Brackets

Mode order 1st 2nd 3rd 3rd 7th 1st 2nd 3rd 5th 2nd 5th 6th 7th 8th 9th 10th 11th

MEC j #aij j 0.13 0.17 0.36 0.10 0.19 0.15 0.15 0.17 0.12 0.38 0.11 0.12 0.16 0.28 0.30 0.23 0.42
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frequency of the bracket increased by about 5%, scheme A has no contribution to restraining of
brake squeal, while scheme B works effectively. Modified bracket on scheme B is used in
manufacturing and effectiveness in restraining squealing is verified in Ref. [10] by field experiment.

The present work makes this clear through the feed-in energy analysis.
Comparing the feed-in energy corresponding to squeal mode of the brake system modified by

scheme A (shown in Table 6) with that of the original brake system (shown in Table 2), it can be
seen that modification scheme A even makes energy fed in the brake system increase a bit. Hence,
it cannot benefit the system stability, let alone elimination of squeal.

Next turning to the brake system modified with scheme B, we first find out the synthetic mode
of the new brake model corresponding to the squeal mode of the original system, and then
calculate its modal shape coefficient of the key nodes. Results are listed in Table 7.

Compared with Table 3, it can be seen that vibration magnitudes of the key nodes diminish
almost by half. If we check the BMCs of the modal shape coefficient of bracket nodes 1246 and
1250 (shown in Table 8), it can be observed that the dominant bracket mode is changed
significantly. That is why the modification scheme B can eliminate the brake squeal effectively.

Table 6

Feed-in energy to squeal mode for the system modified on scheme A

Squeal mode EABx EAbz EBCx EBCz E

21.6+2231.6i 1.77 0.15 5.19 0.52 7.63

Table 7

x-Direction modal shape coefficient to squeal mode of corresponding nodes on pads and bracket for system modified

on scheme B

Nodes of pads Inner pad Outer pad

547 553 509 515

Magnitude 0.341 0.318 0.485 0.496

Phase (deg) 0 0 180 180

Nodes of bracket 1214 1218 1246 1250

Magnitude 0.382 0.303 0.443 0.513

Phase (deg) 0 0 180 180

Table 8

BMC of modal shape coefficient of the key nodes for brake system modified on scheme B

Mode order of bracket j 5 7 9 11 13 18 23 26

Node, 1250 Magnitude of each component 0.089 0.480 0.058 0.103 0.002 0.142 0.119 0.028

Phase of each component 180 180 180 0 180 0 0 0

Node, 1246 Magnitude of each component 0.088 0.469 0.128 0.106 0.003 0.134 0.109 0.025

Phase of each component 180 180 180 0 180 0 0 0
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7. Conclusions

(1) Based on the frictional closed-loop coupling model, calculation method of feed-in energy is
derived. Just like the real part of the eigenvalue from the synthetic model, the feed-in energy
can indicate the level of squeal tendency.

(2) The calculation method of feed-in energy also helps to disclose the influence of structure
design parameters on the feed-in energy, i.e., squeal tendency. It is concluded that small
frictional coefficient, soft frictional material, or long but narrow pad shape make the brake
system become more stable.

(3) Analysis results show that magnitude of each substructure mode component of the modal
shape coefficient corresponding to the squeal mode can indicate the effect of each substructure
mode on squeal mode. Then based on this estimation principle, dominant substructure mode
can be detected and set as the structure modification target when attempting elimination of
the brake squeal.

(4) Effectiveness of the feed-in energy method is illustrated further by application to analysis of
two structure modification scheme of the sample disc brake.
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